
N94-23681
NESTED KRYLOV METHODS AND PRESERVING THE ORTtIOGONALITY

Eric De Sturler 1

Delft University of Technology

Delft, The Netherlands

Diederik R. Fokkema 2

University of Utrecht

Utrecht, The Netherlands

SUMMARY

Recently the GMRESR inner-outer iteration scheme for the solution of linear systems of equations has

been proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and

Vassilevski [1] and Saad (FGMRES) [10]. The outer iteration is GCR, which minimizes the residual over a

given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction

vector by approximately solving the residual equation. However, the optimality of the approximation over

the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal

corrections to the solution in the outer iteration, as components of the outer iteration directions may

reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR

in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular,

non-symmetric operator. We will discuss some important properties and we will show by experiments that,

in terms of matrix vector products, this modification (almost) always leads to better convergence. However,

because we do more orthogonalizations, it does not always give an improved performance in CPU-time.

Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer

GCR process. The experimental results indicate that for such methods it is advantageous to preserve the

orthogonality in the inner iteration. Of course we can also use other iteration schemes than GMRES as the

inner method. Especially methods with short recurrences like BICGSTAB seem of interest.

INTRODUCTION

For the solution of systems of linear equations the so-called Krylov subspace methods are very popular.

However, for general matrices no Krylov method can satisfy a global optimality requirement and have short

recurrences [5]. Therefore either restarted or truncated versions of optimal methods, like CMRES [11], are

used or methods with short recurrences, which do not satisfy a global optimality requirement, like BiCG

[6], BICGSTAB [14], BICGSTAB(/) [12], CGS [13] or QMR [8]. Recently Van der Vorst and Vuik proposed

a class of methods, GMRESR [15], which are nested GMRES methods; see Fig. 2. The GMRESR

algorithm is based upon the GCR algorithm [4]; see Fig. 1. For a given initial guess x0, they both compute

approximate solutions Xk, such that xk -- xo e span{u1, u2,..., uk} and Ilrk[[2 = lib - Azkll2 is minimal.

• . v .)1Delft Vniversit_, of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, NL-,600 CA Delft, The

Netherlands, E-mail: uitaeds@dutinfh.tudelft.nl. The author wishes 1o acknowledge Shell Research B.V. and STIPT for

the financial support of his research.

2Mathematical Institut(,, University of l_tlechl, P.O. Box 80.010. NL-3508 TA Vtrechl, The Netherland._, E-mail:

:fokkemaQmath.ruu.nl. This work was supporled in part by a NCF/('ray Research University ('_ranl CR(-; 92.03

Pltt_/_NN6 PAGE BLANK NOT FILMED PAGE][0 INTENTIONALLYBLANK'r

111

GCR:

1. Select x0, m, toI;

ro = b- Axo, k = 0;

2. while HrkH2 > tol do

k=k+ l;

Uk ---- rk-1; Ck --- Auk;

for i = 1, k- 1 do;

_i = CTCk;

Ck = Ck -- _iCi;

ck = ck/llckll;
_k = _k/llckll;
xk = Xk-1 + (c_ rk-1)Uk;

rk rk-1- (c_rk-1)ck;'T

GMRESR:

1. Select x0, m, tol;

ro = b- Axo, k = 0;

2. while Hrk[[2 > tol do

k=k+ l;

Uk = Pm,k(A)rk-1; Ck = Auk;
for i = 1,...,k- 1 do

Oti = CTCk;

Ck = Ck -- CtiCi;

Uk = Uk -- _iUi;

c_ = c_/llckll2;
_k = uk/llckll2;
Zk = zk-1 + (cTrk-1)Uk;
rk = rk-1 -- (ckr_k-1)_k;

79m,k (A) indicates the GMRES polynomial that
is implicitly constructed in m steps of GMRES

when solving Ay = rk-1.

Figure 1: The GCR algorithm Figure 2: The GMRESR algorithm

However, they compute different direction vectors Uk. GCR sets uk simply to rk-1, while GMRESR

computes Uk by applying rn steps of GMRES to rk-I (represented by Pm,k(A)rk-1 in Fig. 2). The inner

GMRES iteration computes a new search direction by approximately solving the residual equation and

then the outer GCR iteration minimizes the residual over the new search direction and all previous search

directions ui. The algorithm can be explained as follows.

Assume we are given the system of equations Ax = b, where A is a real, nonsingular, linear (n x n)-matrix

and b is a n-vector. Let Uk and Ck be two (n x k)-matrices for which

ck = AUk, tick = 1k, (1)

and let x0 be an initial guess. For Xk -- xo E range(Uk) the minimization problem

lib- Axkllz = rain lit0- Axllz.
xErange(_)

(2)

is solved by
xk = x0 + UkC_kr0 (3)

and rk = b - Axk satisfies
rk ---- r0 -- ckCTro, rk I range(Ck). (4)

In fact we have constructed the inverse of the restriction of A to range(Uk) onto range(Ck) . This

inverse is given by A-1CkC T = UkC T. (5)

This principle underlies the GCR method. In GCR the matrices Uk = [ul u2... uk] and Ck = [cl c2... ck]

are constructed such, that range(Uk) is equal to the Krylov subspace

Kk(A; ro) = span{to, Aro,..., Ak-lro} . Provided GCR does not break down; i.e. if Ck _- rk-1, it is a finite

method and at step k it solves the minimization problem (2).

112

Consider the k-th step in GCR. Equations (1)-(3) indicate that if in the update Uk = rk-1 (in GCR), we

replace rk-1 by any other vector, then the algorithm still solves (2); however, the subspace Uk will be

different. The optimal choice would be Uk = ek-1, where ek-1 is the error in xk-1. In order to find

approximations to ek-1, we use the relation Aek-1 = rk-1 and any method which gives an approximate

solution to this equation can be used to find acceptable choices for uk. In the GMRESR algorithm

GMR_S(m) is chosen to be the method to find such an approximation.

However, since we already have an optimal xt_-l, such that Xk-1 -- xo E range(Uk-1) , we need an

approximation uk to ek_l , such that ck = Auk is orthogonal to range(Ck-1) • Such an approximation is

computed explicitly by the orthogonalization loop in the outer GCR iteration. Because in GMRESR this is
not taken into account in the inner GMRES iteration, a less than optimal minimization problem is solved,

leading to suboptimal corrections [2] to the residual. Another disadvantage of GMRESR is that the inner

iteration is essentially a restarted GMRES. It therefore also displays some of the problems of restarted

GMRES. Most notably it can have the tendency to stagnate (see NUMERICAL EXPERIMENTS).

From this we infer that we should preserve the orthogonality of the correction to the residual also in the

inner GMRES iteration. In order to do this we use Ak-1 = (I -- Ck_IC_k_I)A as the operator in the inner

iteration. This gives the proper corrections to the residual: ck E Km(Ak-1; Ak-lrk-1). However, the

corresponding corrections to the approximate solution (contrary to ordinary implementations of Krylov

methods) are found by Uk = A-lck E A-1Km(Ak-1; Ak-lrk-1). These corrections can be computed since

the inverse of A is known over this space. Equation (5) gives:

A-1Ak_I = A-1A- A-1Ck_IcT_IA = I - Uk_ICT_IA. (6)

This leads to a variant of the GMRESR iteration scheme, which has an improved performance for many

problems.

In this article we will consider GMRES and BICGSTAB as inner methods. In the next section we will

discuss the implications of the orthogonalization in the inner method. It will be proved that this leads to

an optimal approximation over the space spanned by both the outer and the inner iteration vectors. It also

introduces a potential problem: the possibility of breakdown in the generation of the Krylov space in the

inner iteration, since we iterate with a singular operator. We will show, however, that such a breakdown

can never happen before a specific (generally large) number of iterations. Furthermore, we will also show

how to remedy such a breakdown. We will also discuss the efficient implementation of these methods and
how we can truncate the outer GCR iteration. Outlines of the algorithms can be found in [7], [2].

CONSEQUENCES OF INNER ORTHOGONALIZATION

To keep this section concise, we will only give a short indication of the proofs or omit them completely.

The proofs can be found in [2]. Throughout the rest of this article we will use the following notations:

o By Uk = [ul...uk] and Ck = [cl...ck] we denote matrices that satisfy the relations (1);

o By Xk and rk we denote the vectors that satisfy the relations (2)-(4);

o By Pk and Qk we denote the projections defined as Pk = CkC_k and Qk = UkCTkkA;

o By Ak we denote the operator defined as Ak = (I - Pk)A;

o By Vm = [vl ..., Vm] we denote the orthonormal matrix generated by m steps of Arnoldi (GMRES)

with Ak and such that vl = rk/llrkll2.

From this and (6) it then follows that

AQk=PkA, and A-1Ak=(I-Qk). (7)

113

We will describe the (k + 1)-th step of our variant of the GMRESR iteration scheme, where in the inner

GMRES iteration the modified operator Ak is used. We use m (not fixed) steps of the GMRES algorithm

to compute the correction to rk+l in the space Km(Ak; Akrk). This leads to the optimal correction to the

approximate solution xk+l over the 'global' space range(Uk+l) @ A-1Km(Ak; Akrk).

Theorem 1 The Arnoldi process in the inner GMRES iteration defines the relation AkVrn = Vm+Iflm,

with [lm an ((m + 1) × m) Hessenberg matrix. Let y be ae_nea bu

= min Ilrk - Vm+lgm l12. (8)
y: _cl_r"minIlrk - AkVmfll[2

Then the minimal residual solution of the inner GMRES iteration: (A-1Ak Vmy) gives the outer

approximation

= =k + (z- Qk)Vr.y, (9)

which is also the solution to the 'global' minimization problem

xk+l: min lib- A_II 2 (10)

range(Vrn)

It also follows from this theorem that the GCR optimization (in the outer iteration) is given by (9), so that

the residual computed in the inner GMRES iteration equals the residual of the outer GCR iteration:

rk+l = b - Axk+l = b - Axk - AkVmy = rk - AkVmy. From this it follows that in the outer GCR iteration

the vectors uk+l and ck+l are given by

ck+ = (AkVmY)/llAkVmYllz, (11)

Uk+l = ((I-- QDVmy)/IIAkVmYlI2. (12)

Note that (I - Qk)Vmy has been computed already as the the approximate solution in the inner GMRES

iteration; see (9), and AkVmy is easily computed from the relation AkVmy = Vm+lffIym. Moreover, as a

result of using GMRES in the inner iteration, the norm of the residual rk+l as well as the norm of AkVmy

is already known at no extra computational costs. Consequently, the outer GCR iteration becomes very

simple.

We will now consider the possibility of breakdown when generating a Krylov space with a singular,

nonsymmetric operator. Although GMRES is still optimal in the sense that at each iteration it delivers the

minimum residual solution over the generated Krylov subspace, the generation of the Krylov subspace

itself, from a singular operator, may terminate too early. The following simple example shows that this

may happe n before the solution is found, even when the solution and the right hand side are both in the

range of the given (singular) operator and in the orthogonal complement of its null-space.

Define the matrix A = '(e2 e3 e4 0), where ei denotes the i-th Cartesian basis vector. Note that

A = (I - eleT)(ez e3 e4 el), which is the same type of operator as Ak, an orthogonal projection times a

nonsingular operator. Now consider the system of equations Ax = e3. Then GMRES (or any other Krylov

method) will search for a solution in the space

span{e3, Ae3, AZe3, ...} = span{e3, e4, O, 0,...} .

So we have a breakdown of the Krylov space and the solution is not contained in it. We remark that the

singular uusymmetric case is quite different from the symmetric one.

114

In the remainder of this section we will prove that a breakdown in the inner GMRES method cannot occur

before the total number of iterations exceeds the dimension of the Krylov space K(A; r0). This means that,

in practice, a breakdown will be rare. Furthermore, we will show how such a breakdown can be overcome.

We will now define breakdown of the Krylov space for the inner GMRES iteration more formally.

Definition 1 We say there is a breakdown of the Krylov subspace in the inner GMRES iteration if

AkVm E range(Vm) , since this implies we can no longer expand the Krylov subspace. We call it a lucky

breakdown if vl E range(AkVm) , because we then have found the solution (the inverse of A is known

over the space range(AkVm)). We call it a true breakdown if vl _ range(AkVm) , because then the

solution is not contained in the Krylov subspace.

The following theorem relates true breakdown to the invariance of the sequence of subspaces in the inner

method for the operator Ak. Part four indicates that it is always known whether a breakdown is true or

lucky.

Theorem 2 The following statements are equivalent:

1. A true breakdown occurs in the inner GMRE8 iteration at step m;

2. range(AkVm_l) is an invariant sub@ace of Ak;

3. AkVm E range(AkVm_l) ;

4. AkVm = VmHm, and Hm is a singular m × rn matrix.

From theorem 1, one can already conclude that a true breakdown occurs if and only if Ak is singular over

Km(Ak; rk). From the definition of Ak we know null(Ak) = range(Uk) . We will make this more explicit

in the following theorem, which relates true breakdown to the intersection of the inner search space and the

outer search space.

Theorem 3 A true breakdown occurs if and only if

range(Ym) n range(Vk) # (0}.

The following theorem indicates that no true breakdown in the inner GMRES iteration can occur before

the total munber of iterations exceeds the dimension of the Krylov space K(A; ro).

Theorem 4 Let m = dim(K(A; r0)) and let I be such that rk = Pt(A)ro for some polynomial Pl of degree
l. Then

dim(KJ+l(Ak; ro)) = j + 1 for j + l < m

and therefore no true breakdown occurs in the first j steps of the inner GMRES iteration.

We will now show how a true breakdown can be overcome. There are basically two ways to continue:

In the inner iteration: by finding a suitable vector to expand the Krylov space.

115

In the outer iteration: by computing the solution of the inner iteration just before the true breakdown

and then by making one LSQR-step (see below) in the outer iteration.

We will consider the continuation in the inner GMRES iteration first. The following theorem indicates how

one can continue the generation of the Krylov space K(A; rk) if in the inner GMRES iteration a true

breakdown occurs.

Theorem 5 If a true breakdown occurs in the inner GMRES iteration then

3c e range(Ck) : Akc ¢ range(AkVm-1) (13)

This implies that one can try the vectors ci until one of them works. However, one should realize that the

minimization problem (8) is slightly more complicated.

Another way to continue after a true breakdown in the inner GMRES iteration is to compute the inner

iteration solution just before the breakdown and then apply an LSQR-switch (see below) in the outer GCR

iteration. The following theorem states the reason why one has to apply an LSQR-switch.

Theorem 6 Suppose one computes the solution of the inner GMRES iteration just before a true

breakdown. Then stagnation wilt occur in the next inner iteration, that is rk+l l K(Ak+I; rk+l). This will

lead to a breakdown of the outer GCR iteration.

The reason for this stagnation in the inner GMRES iteration is that the new residual rk+l remains in the

same Krylov space K(Ak; rk), which contains a u e range(Uk) . So we have to 'leave' this Krylov space.

We can do this using the so-called LSQR-switch, which was introduced in [15], to remedy stagnation in the
inner GMRES iteration. Just as in the GMRESR method, stagnation in the inner GMRES iteration will

result in a breakdown in the outer GCR iteration, because the residual cannot be updated. The following

theorem states that this LSQR-switch actually works.

Theorem 7 If stagnation occurs in the inner GMRES iteration, that is if

min_e_ m Ilrk+a -AkV._gII2 = Ilrk+lll2, then one can continue by setting (LSQR-switeh)

Ck+2 = 7Ak+IATrk+I and (14)

uk+9. = 7(1-- Ql_+l)ATrk+l, (15)

-1
where 7 = Ilck+211 • This leads to

rk+2

2_k+2

which always gives an improved approximation.
a new inner GMRES iteration.

= rk+l - (r_+lck+2)ck+2 and (16)

T u (17)Xk+l -- (rk+lCk+2) k+2,

Therefore, these vectors can be used as the start vectors for

IMPLEMENTATION

We will now describe how to implement these methods efficiently (see also [2],[7]). First we will discuss the

outer GCR iteration and then the inner GMRES iteration. The implementation of a method like

116

BICGSTAB in the inner iterationwillthen be obvious.Insteadofthe matricesUk and Ck we willuse in

the actualimplementationthe matrices Lrk,Ck, Ark,Zk and the vectordk which are definedbelow.

Definition 2 The matrices Uk, Ck, Nk, Zk and the vector dk are defined as follows.

Ck = CkNk, where

= diag(lleall x,ll 211 a,...,ll kll a),
AUk = CkZk,

where Zk is assumed to be upper-triangular. Finally dk is defined by the relation

rk = ro - Ckdk

(18)

(19)

(20)

(21)

From this the approximate solution xk, corresponding to rk, is implicitly represented as

xk = xo + OkZkl dk. (22)

Using this relation xk can be computed at the end of the complete iteration or before truncation (see next

section). The implicit representation of Uk saves all the intermediate updates of previous ui to a new uk+1,

which is approximately 50% of the computational costs in the outer GCR iteration (see (Ii) and (12)).

GMRES as inner iteration. After k outer GCR iterations we have _rk, 6'k and rk. Then, in the inner

GMRES iteration, the orthogonal matrix Vm+1 is constructed such that Cc_kVm+l = 0 and

AVm = CkBm + Vm+l-fIm (23)

Brn = N_C'_AVm (24)

This algorithm is equivalent to the usual GMRES algorithm, except that the vectors Avi axe first

orthogonalized on C'k. From (23) and (24) it is obvious that AVm - CkBrn = AkVm -- Vm+l I71m (cf.

theorem 1). Next we compute y according to (8) and we set (cf. (11) without normalization):

ck+l ---- Vm+,ITImy (25)

¢Zk+l ---- Vmy. (26)

This leads to A_k+l = AVmy = CkBmy Jr Vm+lf-Irny = CkBmy + 5k+1, so that if we set zk+l = ((Bray) T 1) T

the relation AUk+I = Ck+lZk+l is again satisfied. It follows from theorem 1 that the new residual of the
r inner and is given byouter GCR iterations is equal to the final residual of the inner iteration rk+l = -m

rk+l = rk -- ek+l, so that dk+l = 1. Obviously the residual norm only needs to be computed once. If we

replace, in the formula above, the new residual of the outer GCR iteration rk+l by the residual of the inner
GMRES iteration _.inner __ firmer-m , we see an important relation that holds more generally _k+l = rk -m • This

relation is important, since in general (when other Krylov methods are used for the inner iteration) ck+l or

Ck+l cannot be computed from uk+l, because uk+l is not always computed explicitly, nor does a relation

Ilck+llh in order to satisfylike (25) always exist. Finally, we need to compute the new coefficient of Nk+l, - -1

the relations in definition 2.

TRUNCATION

In practice, since memory space may be limited and since the method becomes increasingly expensive for

large k (the number of outer search vectors), we want to truncate the set of outer iteration vectors (fii) and

117

(ci) at k = kmax, where kmax is some positive integer. Basically, there are two ways to do this: one can
discard one or more iteration vector(s) (dropping) or one can assemble two or more iteration vectors into

one single iteration vector (assembly). We will first discuss the strategy for truncation and then its

implementation.

A strategy for Truncation. In each outer GCR iteration step the matrices Uk and Ck are augmented with

one extra column. To keep the memory requirement constant, at step k = kmaz, it is therefore sufficient to

diminish the matrices Uk and Ckm_, by one column. From (22) we have Xk = xo + OkZkldk. Denote

_k = Zk -1 dk. Consider the sequence of vectors (_k)- The components _k (i) of these vectors _k are the

coefficients for the updates fii of the approximate solution xk. These coefficients _k(0 converge to the limits

_(i) as k increases. Moreover, (_k (1)) converges faster than (_k(2)), and (_k (2)) converges faster than (_k (3))

etc.. Suppose that the sequence (_k 0)) has converged to _(1) within machine precision. From then on it

makes no difference for the computation of Xk when we perform the update x0 + _0)fii. In terms of

direction vectors this means that the outer direction vector 31 will not reenter as component in the inner

iteration process. Therefore one might hope that discarding the vector ez will not spoil the convergence.

This leads to the idea of dropping the vector _1(= Aft1) or of assembling _z with _2 into _ (say) when

I_(1) _ ,:0)

=l k-1
I ?P

(27)

where e > 0 is a small constant. The optimal c, which may depend on k, can be determined from

experiments. When 6 (k) > e we drop Ck.... _ or we assemble ck _ and ck_,x (of course other choices are
feasible as well, but we will not consider them in this article). With this strategy we hope to avoid

stagnation by keeping the most relevant part of the subspace range(Ck) in store as a subspace of

dimension k - 1. In the next subsections we describe how to implement this strategy and its consequences

for the matrices Ok and 0k.

Dropping a vector. Let 1 < j < k = kmax. Dropping the column 5j is easy. We can discard it without

consequences. So let Ck-1 be the matrix Ok without the column _j. Dropping a column from Ok needs

more work, since xk is computed as Xk = xo + OkZkldk. Moreover, in order to be able to apply the same

strategy in the next outer iteration we have to be able to compute xk+z in a similar way. For that purpose,

assume that Xk can be computed as

_1 ! --1 ;

X k = Xlk_l = XO''4" U__I(Z_¢_I) dk_l, (28)

where U;¢_1 and Z_, 1 are matrices such that A0_ 1 = C_, (2_ 1(see (20)). These matrices 0;, 1 and Z_, z

are easily computed by using the j-th row of (20) to eliminate the j-th column of Ck in (20). In order to

determine x_ and d_,_ 1 we introduce the matrix Ok = A-aOk = OkZk _• This enables us to write

k

i=l

_J

j-I

and fij = (fij - _zo_,)/zjj. (29)
i=l

Substituting the equation for fiiinto the equation for Xk we can compute Xk from

d(j) j-z k

ziJ i=z k zj i i=i+z
(3o)

118

Notice that this equation precisely defines x_ and d__a:

x'o = xo + (dk(i)/zjj),

k-1

d_)l' d (/+1)

for / = 1,...,j- 1 and

for i = j,...,k- 1.

(31)

Now we have deallocated two vectors and we compute xk as in (28). We can continue the algorithm.

Assembly of two vectors. Let 1 < j < l < k = kmaz. Again assembling _j and ct is easy. Let

5= (dO)hi + d(O_l) overwrite the l-th column of Ok. Then, let 0__ 1 be this new matrix Ok without j-th

column. Analogous to the above, we wish to compute xk as (28). For the purpose of determining the

matrices Uk-1 and Z__I, let fi = (d(J)_j + d(kO_t) and compute t_rn) and t_ra) such that

zjm ,+ ztm ,+ = which =zt , o),d ('), t)k / k) - zjm and = ztm/a_ • This enables us
to write fZra = _m=lzim_zi, for m = 1,...,j - 1 and

m

tim = E ZimUi + t_rn)u - t_m)_j, for m = j,..., k. (32)

i¢j,t

j--1

Substituting fzj = (fij - Y]i=I zqui)/zjj, to eliminate ej from (32) we get tim = Y]m=a zim_i, for
m= l,...,j-1 and

zjj i=1
i#j,t

for m =j + 1,...,k. (33)

This equation determines the matrices Uk-1 and Z__x. In order to determine x_ and d__a, note that Zk can
be computed as

k

xk xo + Y_ _(i)_= a k ui + ft. (34)
,=1

i-7t:j,t

Therefore x_) is just x0 and d__ 1 equals the vector dk without the j-th element and the l-th element

overwritten by 1. Similarly, as before, we have dealloeated two vectors from memory. The assembled

vectors fi and 5 overwrite fit and _t- The locations of _2j and dj can therefore be used in the next step.

Finally, we remark that these computations can be done with rank one updates.

NUMERICAL EXPERIMENTS

We will discuss the results of some numerical experiments, which concern the solution of two dimensional

convection diffusion problems on regular grids, discretized using a finite volume technique, resulting in a

pentadiagonal matrix. The system is preconditioned with ILU applied to the scaled system; see [3],[9]. The

first two problems are used to illustrate and compare the following solvers:
• (full) GMRES;

• BICGSTAB;

• GMtLESR(m), where m indicates the number of inner GMRES iterations between the outer iterations;

• GCRO(m), which is GCR with m adapted GMRES iterations as inner method, using Ak;

• GMRESRSTAB, which is GMRESR with BICGSTAB as inner method;

119

I --1

los(Irll)

-$

-3

-5

......... \

i i i i

40 80 80 I00

number of matrix vector p_oducts ---_

1

o

T -1
Io_lr6)

-2

--4

-5

i

0 I

xx

... go-form) \ \ _ x.

\ \

,,,,,,, ,,
, ! i I

2 3 4 5

(s) .-"4"

Figure 3: Convergence history for problem 1 Figure 4: Convergence in time for problem 1

• and GCROSTAB, which is GCR with the adapted BICGSTAB as inner method, using Ak.

We will compare the convergence of these methods both with respect to the number of matrix vector

products and with respect to CPU-time on one processor of the Convex 3840. This means e.g. that each

step of BICGSTAB (and variants) is counted for two matrix vector products. We give both these

convergence rates because the main trade off between (full) GMRES, the GCRO variants and the
GMRESR variants is less iterations against more dot products and vector updates per iteration. Any gain

in CPU-time then depends on the relative cost of the matrix vector multiplication and preconditioning

versus the orthogonalization cost on the one hand and on the difference in iterations on the other hand. We

will use our third problem to show the effects of truncation and compare two strategies.

Problem 1. This problem comes from the discretization of

-(ux + uu) + + c% = 0

on [0, 1] x [0, 4], where

100 for 0_<y<l and 2_<y<3b(x,y)= -100 for 1_<y<2 and 3_<y_<4

and c = 100. The boundary conditions are u = 1 on y = 0, u = 0 on y = 4, u' = 0 on x = 0 and u' = 0 on

x = 1, where u' denotes the (outward) normal derivative. The stepsize in x-direction is 1/100 and in

y-direction is 1/50.

In this example we compare the performances of GMRES, GCRO(m) and GMRESR(m), for m = 5 and

m = 10. The convergence history of problem 1 is given in Fig. 3 and Fig. 4. Fig. 3 shows that GMtLES

converges fastest (in matrix vector products), which is of course to be expected, followed by GCRO(5),

GMPdgSR(5), GCRO(10) and GMRESR(10). From Fig. 3 we also see that GCRO(m) converges smoother

and faster than GMRESR(m). Note that GCRO(5) has practically the same convergence behavior as

GMRES. The vertical 'steps' of GMRESR(m) are caused by the optimization in the outer GCR iteration,

which does not involve a matrix vector multiplication. We also observe that the GMRESR(m) variants

tend to lose their superlinear convergent behavior, at least during certain stages of the convergence history.

This seems to be caused by stagnation or slow convergence in the inner GMRES iteration, which (of

course) essentially behaves like a restarted GMtLES. For GCRO(m), however, we see a much smoother and

faster convergence behavior and the superlinearity of (full) GMRES is preserved. This is explained by the

'global' optimization over both the inner and the outer search vectors (the latter form a sample of the

entire, previously searched Krylov subspace). So we may view this as a semi-full gmres. Fig. 4 gives the

120

!
]osOl_

-3 -.......... gcro(m)

-4-

i

5O

i i i

100 tSO 2'00

number of matrix vuctor lXOducts =.=*

Figure 5: Convergence history for problem 2

3

, it

--4

....... (ful])grm_

....... bicgsmb

............ gcro_t_o

__ _nre_rs_b

',, \
' "i) ,\

100 200 300 400

number of nm_x vector products --_

000

Figure 6: Convergence history for BICGSTAB

variants for problem 2

2

1

I o
lo_(,r,)

--I

--2

--3

--4

l | i

0 I 2 3

.........scro(]0)
__ smres_lo)

_ biegstab

I

,ser

• ,'_.... . ,'.

4. 5 _8 7

Figure 7: Convergence in time for problem 2

u-1

a-lO0

f_lO0

uul

Figure 8: Coefficients for problem 2

convergence with respect to CPU-time. In this example GCRO(5) is the fastest, which is not surprising in

view of the fact that it converges almost as fast as GMRES, but against much lower costs. Also, we see

that GCRO(10), while slower than GMRESR(5), is still faster than GMRESR(10). In this case the extra

orthogonalization costs in GCRO are outweighed by the improved convergence behavior.

Problem 2. This problem is taken from [14]. The linear system comes from the discretization of

-(au=)= - (auy)y + bu= = f

on the unit square, with b = 2 exp2(x 2 + y2). Along the boundaries we have Dirichlet conditions: u = 1 for

y = 0, x = 0 and x = 1, and u = 0 for y = 1. The functions a and f axe defined as shown in Fig. 8; f = 0

everywhere, except for the small subsquare in the center where f -- 100. The stepsize in x-direction and in

y-direction is 1/128.

If Fig. 5 a convergence plot is given for (full) GMRES, GCRO(m) and GMRESR(m). We used m = 10 and
m = 50 to illustrate the difference in convergence behavior in the inner GMRES iteration of GMRESR(m)

and GCRO(rn). GMRESR(50) stagnates in the inner GMRES iteration whereas GCRO(50) more or less

displays the same convergence behavior as GCRO(10) and full GMR_S. For the number of matrix vector

products, it seems that for GMRESR(m) small m are the best choice.

121

In Fig. 6 a convergence plot is given for (full) GMRES, BICGSTAB, and the the BICGSTAB variants,

GMRESRSTAB and GCROSTAB. To our experience the following strategy gave the best results for the
BICGSTAB variants:

• For GMRESRSTAB we ended an inner iteration after either 20 steps or a relative improvement of the

residual of 0.01;

• For GCROSTAB we ended an inner iteration after either after 25 steps or a relative improvement of the
residual of 0.01.

The convergence of GMRESRSTAB for this example is somewhat typical for GMRESRSTAB in general

(albeit very bad in this case). This might be explained from the fact that the convergence of BICGSTAB

depends on a 'shadow' Krylov subspace, which it implicitly generates. Now, if if one restarts, then

BICGSTAB alsost_s to-build a new, possibly different, 'sh_i0W * Krylov subspace. Thismay lead to
erratically convergent behavior in the first few steps. Therefore, it may happen that, if in the inner

iteration BICGSTAB does not converge (to th e relative precision}, the ',olution' of the inner iteration is
not very good and therefore the outer iteration may not give much improvement either. At the start the

same more or less holds for GCROSTAB; however, after a few outer GCR iterations the 'improved'

operator (Ak) somehow yields a better convergence than BICGSTAB by itself. This was also observed for

more tests, although it also may happen that GCROSTAB converges worse than BICGSTAB.

In Fig. 7 a convergence plot versus the CPU-time is given for GCROSTAB, BICGSTAB, GCRO(10) and
GMRESR(10). The fastest convergence in CPU-time is achieved by GCROSTAB(10), which is _ 20%

faster than BICGSTAB notwithstanding the extra work in orthogonalizations. We also see, that although

GCRO(10) takes fewer iterations than GMRESR(10), in CPU-time the latter is faster. So in this case the

decrease in iterations does not outweigh the extra work in orthogonalizations. For completeness we mention

that GMRESRSTAB took almost 15 seconds to converge, whereas GMRES took almost 20 seconds.

Problem 3. The third problem is taken from [10]. The linear system stems from the discretization of the

partial differential equation

-U,rx - u_v + 1000(xux + yu_) + 10u = f

on the unit square with zero Dirichlet boundary conditions. The stepsize in both x-direction and

y-direction is 1/65. The right-hand side is selected once the matrix is constructed so that the solution is

known to be x -- (1, 1,..., 1) T. The zero vector was used as an initial guess.

In Fig. 9 we see a plot of the convergence history of full GMRES, GMRESR(5), GCRO(5) and

GCRO(10,5) for two different truncation strategies, where the first parameter gives the dimension of the

outer search space and the second the dimension of the inner search space. The number of vectors in the

outer GCR iteration is twice the dimension of the search space. For the truncated version:

* 'da' means that we took e = 10 -3 and dropped the vectors fil and _1 when 6 (k) < e and assembled the

vectors fi9 and ill0 as well as the vectors c9 and el0 when 6 (k) > e;

* 'tr' means that we dropped the vectors fi9 and e9 each step (e = 0, see also [16]).

Notice that GCRO(5) displays almost the same convergence behavior as full GMRES. GMRESR(5)

converges eventually: but 0nly :after a long period of Stagnation. The truncated Versions of GCRO(5) also

display stagnation, but for a much shorter period. After that the 'da' version seems to converge as

superlinear, whereas the 'tr' version still displays periods of stagnation, most notably at the end. This

indicates that the 'da' version is more capable of keeping most of the 'convergence history' than the 'tr'

version. This kind of behavior was §een in more tests: 'assembled' truncation strategies seem to work

better than just discarding one or more iteration vectors.

In Table 1 we give the number of matrix vector products, the numberof memory vectors and the

CPU-time on a Sun workstation. From this table we see that GCRO(5) is by far the fastest method and

122

o

@

1.0e+01

1.0e+00

1.0e-01

1.0e-02

1.0e-03

1.0e-04

l. Oe-05

1.0e-06

0

J i i u

GMRES --

GMRESR (5)

GCRO (5)

GCRO (10, 5) da

__.__ GCRO(10, 5) tr

: iiiTf,

I I I L---_

50 I00 150 200 250

number of matrix vector products

Figure 9: Convergence history for problem 3

uses about half the amount of memory vectors full GMl_ES and GMRESR(5) use. More interesting is that

GCRO(10,5) 'da' converges in the same time as GMRESR(5), but uses only one third of the memory space.

CONCLUSIONS

We have derived from the GMRESR inner-outer iteration schemes a modified set of schemes, which

preserve the optimality of the outer iteration. This optimality is lost in GMRESR since it essentially uses

'restarted' inner GMRES iterations, which do not take advantage of the outer 'convergence history'.

Therefore, GMRJ_SR may loose superlineax convergence behavior, due to stagnation or slow convergence of
the inner GMRES iterations.

i[Method

GMRES

GMRESR(5)

GCRO(5)
GCRO(10,5) 'da'

GCRO(10,5) 'tr'

Mat-Vec

77

188

83

150

244

Memory Vectors

77

81

39

25

25

CPU-time

21.3

18.5

9.4

18.3

30.3

Table 1: Number of matrix vector products, number of memory

vectors and CPU-time in seconds for problem 3

123

In contrast,the GCROvariantsexploit the 'convergencehistory' to generatea searchspacethat hasno
componentsin anyof the outerdirectionsin whichwehavealreadyminimizedthe error. For GCRO(m)
this meansweminimizethe erroroverboth the innersearchspaceanda sampleof the entirepreviously
searchedKrylov subspace(theoutersearchspace),resultingin a semi-fullGMRES.This probablyleadsto
the smoothconvergence(muchlike GMRES)andthe absenceof stagnation,whichmayoccurin the inner
GMRESiterationof GMRESR.Apparentlythesmallsubsetof Krylov subspacevectorsthat is kept
approximatesthe entireKrylov subspacethat is generated,sufficientlywell. Forboth GMRESR(m)and
GCRO(m)it seemsthat a small number of inner iterations works well.

: We may also say, that the GCRO variants construct a new (improved) operator (of decreasing rank) after

each outer GCR iteration. Although there is the possibility of breakdown in the inner method for GCRO,

this seems to occur rarely as is indicated by theorem 4 (it has never happened in any of our experiments).

With respect to performance of the discussed methods we see that GCRO(m) (almost) always converges in

fewer iterations than GMRESR(m). Because GCRO(m) is on average more expensive per iteration, this

does not always lead to faster convergence in CPU-time. This depends on the relative costs of the matrix

vector product and preconditioner w.r.t, the cost of the orthogonalizatious and the reduction in iterations

for GCRO(m) relative to GMRESR(m). Our experiments, with a cheap matrix vector product and
preconditioner, show that already in this case the G(_RO variants are very competitive with other solvers.

However, especially when the matrix vector product and preconditioner are expensive or when not enough

memory is available for (full) GMRES, GCRO(m) is very attractive. GCRO with BICGSTAB also seems

to be a useful method, especially when a large number of iterations is necessary or when the available

memory space is small relative to the problem size. GMRESR with BICGSTAB does not seem to work so

well, probably because, to our observation, restarting BICGSTAB does not work so well.

We have derived sophisticated truncation strategies and shown by example that super!inear convergence

behavior can be maintained. From our experience, the 'assembled' version seems to have the most promise.

Acknowledgements. The authors are grateful to Gerard Sleijpen and Henk van der Vorst for

encouragement, helpful comments and inspiring discussions.

References

124

[1] O. Axelsson and P.S. Vassilevski. A black box generalized conjugate gradient solver with inner

iterations and variable-step preconditioning. SIAM J. Matrix Anal. Appl., 12:625-644, 1991.

[2] E. De Sturler. Nested Krylov methods based on GCR. Technical Report 93-.., Faculty of Technical

Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, I993.

[3] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. Van der Vorst. Solving Linear Systems on Vector

and Shared Memory Computers. SIAM Publications, Philadelphia, PA, 1991.

[4] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric

systems of linear equations. SIAM J. Numer. Anal., 20:345-357, 1983.

[5] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate

gradient method. SIAM J. Numer. Anal., 21:352-362, 1984.

[6] R. Fletcher.Conjugategradientmethodsfor indefinitesystems.In G.A.Watson,editor, Numerical

Analysis Dundee 1975, Lecture Notes in Mathematics 506, pages 73-89, Berlin, Heidelberg, New York,

1976. Springer-Verlag.

[7] D.R. Fokkema. Hybrid methods based on the GCR principle (to appear). Technical report,
Mathematical Institute, University of Utrecht, Utrecht, The Netherlands, 1993.

[8] R.W. Freund and N.M. Nachtigal. QMR: A quasi minimal residual method for non-Hermitian linear

systems. Numer. Math., 60:315-339, 1991.

[9] J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear equations systems of
which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148-162, 1977.

[10] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Statist. Comput.,

14:461-469, 1993.

[11] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986.

[12] G.L. Sleijpen and D.R. Fokkema. BiCGstab(l) for linear equations involving matrices with complex

spectrum. Technical Report 772, Mathematical Institute, University of Utrecht, Utrecht, The

Netherlands, 1993.

[13] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput., 10:36-52, 1989.

[14] H.A. Van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631-644, 1992.

[15] H.A. Van der Vorst and C. Vuik. GMRESR: A family of nested GMRES methods. Technical Report
91-80, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The

Netherlands, 1991.

[16] C. Vuik. Further experiences with GMRESR. Technical Report 92-12, Faculty of Technical

Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1992.

125

